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INTRODUCTION 
Statistics can be fairly divided into two constructs: descriptive statistics and inferential statistics.   

Descriptive statistics merely describes, without implying anything.  Descriptive statistics employs 
counting occurrences (frequencies) and relative occurrences (frequencies of one classification relative 
to some other classification; calculating the mean, median , or mode; and calculating the variation 
and standard deviation of the set  Such group descriptions may be by number or percentages.  Not 
much else can be accomplished in descriptive statistics without involving inferential statistics. 

Inferential statistics takes the group descriptions and goes a step or two further, verifying that 
classifications are significant, implying or inferring relationships and correlations, establishing the 
strength or importance of relationships, pondering causations and/or making predictions.  Inferential 
statistics is often taught as if it were deterministic and conclusive to the same degree that well-
established and tested laws of science are assumed to be.  While the mathematics of inferential 
statistics is determinant, i.e., data input to the statistical procedures and algorithms yield answers, the 
routine application of inferential statistics in the real world too often leads to frivolous, 
irrelevant, and/or erroneous conclusions. 

The investigator employing inferential statistics must understand that it is a mathematical construct – 
an ideal concept of perfect randomness and perfect probability distributions applied to completely-
defined and perfectly independent variables which are perfectly measured.  In such ideal world, the 
set is homogeneous, randomness is the only cause of irregularity, and variance of a measure from the 
random function is smooth and tantamount to systemic cause.   

In the real world, however, nothing is perfect.  Many non-random operators cause irregularities, 
such as chaos and catastrophe, confounding our analysis of real systems.  Identifiable variables are 
seldom truly independent, and many important variables are unseen and unknown.  Coincidental and 
spurious variables and relations appear that suppress, mask or enhance the real actors which often 
remain elusive.  Measurement of variables, if it can be done at all, is imprecise, irregular, and very 
often indirect.  Often we must measure marker or proxy variables because we cannot directly access 
or see the causal variables.  Correlation is too often only coincidental, masking spuriousness and 
confused by the investigator with causation.  Measurement of real variables is subject to error, pre-
judgment, and bias.  Random distributions are not smooth, and differentiation of randomness from 
irregular systemic causes is difficult or impossible.  A serious and seemingly unbridgeable gap exists 
between the ideal concept and the real world. 

Despite the above shortcomings, statistical analysis is a powerful and useful tool for the scientific 
investigator and the engineer – provided we understand its limitations and caveats, and the 
knowledge that no finding made statistically can ever be certain.  Thus, every statistically-based 
finding should be subject to repeated re-examination. 

This paper discusses the relationships and identifying characteristics of different, but related, 
concepts and causes of uncertainty, such as disorder, randomness, probability, catastrophe, chaos, 
approximation, precision, and order, and their implications on prediction using ideal systems to 
predict real behavior.  The implications of sampling real behavior and estimating real populations 
using ideal constructs is discussed.  Considerable discussion is given to the limitations of randomness 
because it is an essential underlying concept in statistical analysis, and to the effects of spuriousness 
because it is the single most prominent cause invalidating statistical investigations.   
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SHORT DEFINITIONS 
 

Approximation – a less than complete representation of a measurement or a system.   

Bias – the occurrence of a systemic actor to influence the outcome of an otherwise random event. 

Catastrophe – a sudden and usually unexpected event, or series of events emanating from a system, 
wherein the event(s) interrupts, collapses, or destroys the system.   

Chaos – a series of irregular systemic events wherein the precise predictability of a specific event is 
difficult or impossible with any degree of confidence.   

Coincidental – happening at the same time, but otherwise unrelated to another happening. 

Conceptual – a model or ideal of a real event or system; a mental or mathematical representation of 
reality. 

Discrete – individual, or entity, as in a discrete member of a set; not continuous, as in a discrete 
mathematical function. 

Disorder – unpredictability of a series of events, lack of a discernable pattern.  Complete disorder 
implies a total lack of a system in a series of events.  Partial disorder may be characterized by varying 
degrees of randomness, catastrophe, or chaos. 

Event – the thing that happens; that which we observe and measure, and desire to predict. 

Gaussian – a family of mathematical functions which characterize randomness by a probability 
density function, wherein the sum or integral of the area under the density function is equal to one 
(one hundred percent probablitity.) 

Homogeneous – having the same properties throughout. 

Homogeneity – the degree to which the members of a set are homogeneous. 

Ideal system – a conceptual system with completely known initial conditions and predictable 
behavior. 

Irregular – lacking uniformity in periodicity.  Irregular may apply to be a systemic reoccurring 
event, and is not necessarily synonymous with randomness. 

Marker – a non-causal variable, usually easily measured or observed, that is believed to co-vary with 
a causal variable, and is often difficult to measure or observe.   

Model – an ideal representation of a real system; an ideal system. 

Normal – a mathematical Gaussian function of a continuous probability distribution otherwise known 
as the “bell” curve, because its shape resembles the outline of a bell. (Also see “Gaussian,”  above.)  

Occurrence – the happening in time of an event. 

Order – a series of events with predictable or repetitive patterns. 

Population – a discrete set whose members share some common attribute, or, in a study, are thought 
to share some common attribute. 

Precision – the relative accuracy in real systems or real events in which an item is manufactured, a 
series of events executed, or a measurement made. 
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Prediction – the ability to predetermine the occurrence of an event by means of evaluating the initial 
or known conditions, relations, and variables. 

Probability – a measure of the opportunity of occurrence of a specific event based on the number of 
times the specific event exists in a set of all events possible in the set. 

Proxy – a measured variable, usually easily observed, that stands in place of an unmeasured variable, 
usually difficult to observe.  

Random – a non-repetitive pattern that has a Gaussian or probability distribution (see Randomness). 

Randomness – the property of a set or series of non-chaotic events wherein the events within the set 
occur without a repetitive pattern, and each event in the set has a specific probability of occurrence 
(usually an equal chance), but the timing or occurrence of a specific event in the set or series is 
unknown.    

Real system – an actual system, wherein observer control and or identification of all the contributing 
conditions, relationships, and variables are inherently incomplete.  

Representation – the degree that a model or ideal system conforms to a real system, or that a sample 
conforms to a population. 

Sample – a subset of a population that infers some degree of representation of the population. 

Sample frame – a subset of the population from which the sample is drawn. 

Spurious – unrelated, coincidental.  

System – a set of related events.  A system implies a degree of order and relationship among the 
events of the system set. 

Uncertainty – the degree that the predictability of the occurrence of an event is unknown.  In 
statistical analysis and probability, uncertainty of an ideal system is the calculated value of one minus 
the probability (e.g., if the probability of an event is 80%, then the uncertainty is 20%).  However, a 
broader definition for a real system would include the degree that existence and representation are 
undetermined, which would cause the uncertainty to be much greater in real systems. 
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NON-RANDOM ACTORS  
 

In an ideal statistical system randomness is the only cause of irregularity, and all else is regular and 
systemic.  However, in the real world there are many causes of irregularity that are not random.  
Such irregularities may even be systemic.  Some of the better known non-random actors, such as 
chaos and catastrophe and the concepts order and disorder are discussed below.    

THE NATURE OF ORDER 

Order implies predictability.  The relationships and variables in an ordered set of events may be 
simple, such as a set of integers - each of which is one more than the previous (e.g., 1, 2, 3, 4….), or 
quite complex – such as harmonic modes of response for a slender elastic column buckling under a 
compressive load.  Ordered sets may be discrete events – such as water drops falling on a surface, or 
continuous events, such as the deflection of a beam under a continuously increasing load.  Order is 
often classified as to how we measure it, such as rank, class, size, color, or physical state; or how we 
might classify the relationships, such as discrete, continuous, arithmetic, geometric, transcendent, 
logarithmic, and so forth. 

System.  Order is synonymous with system.  Systems have variables, relationships, and events.  
Variables are the inputs and outcomes of systems.  The term variable may include system actors with 
zero or imperceptible change, as well as actors that change.  Sometimes we can directly view the 
variables of a system, and sometimes they are difficult to discern.  Relationships between variables 
are seldom obvious and require considerable effort to identify and model.  Relationships are stated in 
the form of equations and formulas.  Events are distinct happenings in a system that we can observe 
or discern.  In an ideal system, events are associated with a variable as and input or an output, but in 
real systems, clearly demarked events may be difficult to discern, or to firmly establish an association 
with known variables.   

Ideal system.  An ideal system in one we construct in our head, on paper, or in a computer, 
purportedly representing a real system.  Ideal systems are primarily a human construct, although a 
few other life forms exhibit some degree of reflection, contemplation, and strategizing in their 
interactions with their environment.  The neophyte, emerging investigator-scientist must develop a 
keen appreciation for the profound difference that can exist between the idea, or model, in the human 
brain (or computer), and the real system.  The potential for distortion and error to creep into the 
model is great.  To appreciate the difference in real and ideal systems, one only has to imagine the 
tortuous path that a visual image takes to travel from the real system to the representation in the 
brain: 

Light shines on the real thing from multiple sources, such as the sun, and from reflection and 
refraction off other surfaces, which may cause the occurrence of Moiré or other effects to be present 
in the light beams.  Such light rays hit the surface of the real thing, where further reflection and/or 
refraction may introduce phase shifts and patterns into the light rays occluding the nature of the 
thing.  From there the reflected light rays travel through the atmosphere, suffering some scatter and 
distortion along the way until the light ray reaches the eye(s) of the observer and is imperfectly 
focused onto a finite number of photo-receptor cells that convert the light energy into chemical-
electrical impulses which travel through a neural network to a processing center in the brain where 
the chemical-electrical impulses are interpreted.  All along the path to the brain lies considerable 
opportunity for signal interruption and distortion to occur from damaged or dysfunctional receptors 
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or nerves, the nature of which may not be detectable to, or correctable by, the interpreting center of 
the brain.  Indeed, the interpreting center of the brain itself may be damaged from disease or 
accident, or otherwise dysfunctional through hardship, abuse, or even other misrepresentations in 
the brain, so that its attempts at interpretation and reconstruction introduce more distortion.  
Probably these distortion effects are present in all humans to some degree, and to some perhaps so 
much that complete misrepresentation occurs to the point it is fatal to the individual or disabling to 
the human group to which the observer belongs.  

Examples of ideal systems.  Mathematics is an ideal construct.  We impose absolute consistency and 
strict logical algorithms to it.  In many cases it is a very accurate representation of reality, such as 
when we count discrete objects – for example individual humans.  Let’s say we can count the number 
of humans in a building: one, two three, … up to 15 people total at the time of counting.  That is as 
representative of reality as it gets, but is still an ideal construct.  Now perhaps we have four rooms in 
the building, and the individuals are dispersed rather uniformly throughout the building.  So we now 
calculate with our mathematical division algorithm that there must be then an average of 15/4 or 3 
and ¾ person per room.  Now we are definitely into an ideal construct, as there is no such thing in 
reality as ¾ of a person.  A person is either “1” or “0” (zero) – no fractions allowed.  Does that mean 
that the concept of  3-¾ personas is invalid or useless?  Not at all!  The concept of a partial person is 
useful in describing groups, but meaningless in describing an individual.  Statistics is method of 
describing a group and not an individual of the group.  We will emphasis this point many times. 

Real system.  Real systems exist in reality, while ideal systems reside in our brain as an approximate 
representation of reality.  Real systems are never completely static, although they may change very 
slowly – perhaps over millions of years, so we may represent them ideally as static without 
appreciable error.  Other real systems are more observably dynamic, the change from input to output 
occurring over a time span that may range from nanoseconds to centuries.   

Order may also be a subset of disorder - that is, within a disordered series of events, such as 
randomness, there may appear pseudo-orders, or even real patterns which are unrelated to the 
observed phenomena or system.  It is partially from this principle that spurious events and relations 
appear in measuring real systems. 

THE NATURE OF DISORDER 

The cyclic nature the seasons and phases of the moon has been recognized for thousands of years.  
Most religions perceive an ordered universe, generally imagined to be far more orderly than it 
actually is.  In some philosophical speculation or conjecture, disorder is believed to be the rule, yet 
because it is without discernable pattern, disorder is seldom recognized directly, and usually 
discovered in the unexpected disturbances of observed systems with expected behaviors.  Most 
events we commonly think as disordered are actually chaotic systems.  The evolution of our senses to 
detect the presence of events may be necessarily dependent on the systematic reoccurrence of events 
in order to serve a predictive function and enhance our survivability.  True and complete disorder, 
then, may be largely invisible to us.   

Disorder may also be a subset of order, i.e., within a set of ordered events may exist a disordered set.  
There are some important subsets of disorder: chaos, catastrophe, and randomness, which seem to be 
a blend of order and disorder, but often have distinctive and recognizable characteristics that impart a 
limited degree of predictability. 
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CHAOS 

Chaos is a developing field in mathematics which deals with chaotic systems.  Chaotic systems are 
extremely sensitive to initial conditions or small disturbances, but appear to have definite bounds or 
limits within which system events occur.  Such systems are systemic and determinant in a sense that 
there are relationships and variables that determine outcome, but the initial conditions, and small 
perturbations that can occur may so drastically alter outcomes that precise event prediction in real 
systems may be impossible.  Chaotic systems may have both regular and irregular periodicities.  
Some ideal chaotic systems display graphically in unexpected patterns that seem to revolve around 
“strange attractors” as if influenced by some invisible force. 

It is thought that most real systems are chaotic to some degree.  An example is weather patterns, such 
as rainfall.  Many cyclic, systemic factors influence rainfall patterns, and the actual rainfall 
experienced is a result of the combination of such factors.   

EXAMPLE:  

To illustrate how the combination of a few simple cyclic relationships can result in extremely 
complex outcomes, consider the following two graphical plots which depicted a fictitious rainfall 
over a one-hundred-month period.  Figure 1 is a plot of the original initial conditions, and plot 2 is a 
plot of a slight change in the initial conditions  
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Figure 1.  Fictitious rainfall, original initial conditions 
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Figure 2.  Fictitious Rainfall, one (of 6) initial condition changed 1% 
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An inspection of either of the above plots might lead us to conclude that the magnitude and timing of 
the rainfall might be random because of the irregularity of the timing, duration, and magnitudes of 
the rainfall.  However, the truth is that the plot is a sum of three relatively simple trigonometric 
functions, and not random at all.  There are only six initial input values.  A change in only one of the 
six initial variables, from a value of 1.00 to 0.99 (a 1% change) makes a drastic change in the output, 
as plotted in the second graph, depicted in Figure 2. 

This is an example of a chaotic system and how small changes in initial conditions drastically 
changes outcome.  It is also an example that irregular events do not necessarily imply randomness. 

The above fictitious example was an ideal system.  In real systems, “initial” conditions may be input 
irregularly, or even randomly, so that precise outcome is impossible to predict (although bounds may 
be obvious.)  The point in this example is that chaos is probably a significant actor in the real world, 
as much or more so than randomness, and the implications of that on statistical analysis of real 
systems, and the ideal assumption that all irregularity is randomness, may be profound, and is yet to 
be evaluated.  Chaotic events are irregular systemic events, and not random events. 

 
CATASTROPHE 

Catastrophe is an emerging mathematical field that explores systems, including chaotic systems, 
where triggers or thresholds under certain conditions cause sudden and often unrecoverable or 
irreversible collapse of the system.  An example of a real catastrophic system would be the buckling 
of a slender column under specific critical compressive loads.  Current non-linear structural theory 
would predict an increasingly divergent lateral deflection over a very short loading change near the 
critical load, and at the buckling point a singularity (i.e., an infinite lateral deflection) at the critical 
load.  The ideal conventional system would predict a recovery after the critical load was exceeded.  
In real systems, the slender column would collapse catastrophically - and not recover.  Catastrophe 
theory would seek to form an ideal relation which mirrored the real systems inability to recover.  
Catastrophe is very common in the real world, and difficult to model in the ideal world. 
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RANDOMNESS 

 
Randomness is a special mathematical concept that appears to have significant representation in real 
systems.  Random events are those that occur in a probabilistic manner, wherein the occurrence of 
many such events tends to follow a Gaussian distribution.  The classical Gaussian distribution is the 
so-called “normal,” or bell curve so predominant in statistical problems.  However there are many 
other probability distributions that exhibit randomness.  Randomness is an extremely important 
concept and construct for the study and application of statistical procedures.  It is important to realize 
that the concept of randomness is an ideal construct, and therefore only approximately representative 
of real systems.   

A classic example of randomness is the distribution of heights or weights in adult men or women.  
Within any homogeneous population of humans of like attributes, such as race, ethnicity, or gender, 
the variation of weight or height among that population appears to be randomly distributed.  The 
apparent occurrence of randomness in real populations allows a certain amount of characterization 
and predictability of the group, although any particular member may possess attributes at either 
extreme of the distribution curve, or anywhere in between.  Therefore, the predictability is for the 
group or set, and not for a particular individual or member of the set.   

In the following discussion, we will use as an example adult human height.  Adult human height 
varies worldwide from 2- feet to nearly 9 feet tall.  Yet at the extremes, very few examples can be 
found, while at the mean, and within one standard deviation, the majority of the individuals fit within 
a relatively narrow range.   

POPULATION 

A population is a set of members, each member having, or believed to have one or more common 
attributes.  Members may be animate beings or inanimate objects.  In any statistical analysis, the ideal 
population is homogeneous in the attribute, with all variation in the attribute being caused either by 
randomness, or by a systemic cause.  No other alternatives exist in the ideal statistical system.  
Irregularities caused by chaotic or catastrophic systemic cause will be interpreted as random events.  
In fact, the happenstance occurrence of a systemic-appearing subset of random events will be 
interpreted as systemic, when in reality it would be spurious.   

In the real world, populations are seldom homogeneous, and random-appearing irregularities caused 
by chaotic or catastrophic causes may exist along with regular systemic causes.  Moreover, systemic-
appearing subsets of random events may occur in our measurements, giving rise to spuriousness.  
Such spuriousness would be in addition to that occasioned by the inclusion of variables unrelated to 
the population.  Statistical procedures cannot discern spuriousness, and will interpret systemic 
irregularity as randomness. 

Sub-populations.  Within a larger population may exist groups with significant systemic differences 
in the measure of one or more attributes of the entire population.  In extracting random samples from 
a population, the existence of significant sub-populations should be considered, as otherwise the 
calculation of statistical estimators for the larger population may be irrelevant and meaningless.   

An example is the measurement of height in an adult population of humans.  For a particular ethnic 
group, the average height of an adult human might be calculated as 5’-6”.  Yet, very few such adults 
may actually exist at that height.  In reality two sub-groups exist – adult males, and adult females.  
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Humans display gender dimorphism – that is, males are typically taller than females of the same 
ethnic group by about six inches, while variation within one standard deviation for each gender is 
only about two inches (see example under Significance, below.)  

Limits.  In theory, a random distribution has an infinite number of members in the population with 
distributions ranging between minus infinity (- �) to plus infinity (+ �), or for some distributions, 
from zero to infinity.  However, in real systems, random distributions have finite populations and 
finite limits to the distribution of variance.  For example, in human adult height, a finite and positive 
height greater than zero always exists, and rarely, if ever, exceeds the upper bounds approaching nine 
feet.    

Homogeneity.  Ideal populations are homogeneous – i.e., the members all have identical attributes 
that vary only in random assignment.  Random sampling of an ideal homogeneous population 
produces unbiased estimators of the population’s characteristics.  Real populations, however, are 
almost never homogeneous, containing sub-populations with significant systemic differences.  The 
overall statistical characteristics of such real populations (with significant systemic differences 
among sub-populations) may be misleading or meaningless.  In such cases, the statistical 
characteristics of each sub-population need to be investigated, and the sampling rate needs to be set 
so that each sub-population sample is of sufficient size. 

SAMPLING 

An important adjunct to randomness is the concept of random sampling.  In real populations, 
measuring the characteristics of every individual entity within the population is difficult, impossible, 
or very expensive – so measurement of a representative sample is attempted.   

Sample Frame.  A sample frame is that portion of the total population from which a sample is 
actually extracted.  Several different factors exist in the real world to cause a sample frame to be 
significantly different from the total population.  In addition, the cost of sampling may be great 
enough that the investigator or researcher deliberately limits the scope of the investigation.  When 
such occurs, as is most often, then any generalization of the sample characteristics can only be 
legitimately done for the sample frame, and not the total population.   

Most real populations are not homogeneous - so much so, in fact, that some sub-populations are 
deliberately, or de facto, excluded from consideration for sampling.  For example, any researcher 
bent on extracting a random sample from a population of humans would first need a listing of the 
entire population.  Such a listing may not exist.  Two sources may be useful – a census or a telephone 
listing.  However, many countries do not have accurate census information, and in many countries, 
telephones are a luxury item of the few and privileged.  Moreover, human populations are somewhat 
mobile, and by the time the researcher has developed a comprehensive list, some of the members 
listed may have moved or become unavailable.  Even in very affluent countries, such as the US, not 
every member of the population has a telephone or is listed in the directory.  If random participants 
were drawn from the names in the telephone book, very significant portions of the population would 
be excluded – those without telephones, and those persons with unlisted numbers.  For example, it is 
unlikely that significant numbers of teenagers and children would have listings in the telephone 
directory, nor would prisoners, mentally-challenged adults, itinerants, visitors, or the long-term 
unemployed.  Compounding the problem of random sample extraction in this example is that the 
affluent may have several phones, while those at or below the poverty line may have none. 
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Bias.  The characteristics of a sample can be an unbiased estimator of the population characteristics 
only if it is a randomly-selected sample from a homogeneous population.  For samples not selected 
randomly, and/or where the population is not homogenous, the sample characteristics may be 
severely biased.  There are several sources of sample bias, some of which are listed below: 

1) by the investigator deliberately or unknowingly excluding listing sources,  
2) by deliberately or unknowingly excluding sub-populations, 
3) by non-responsive sample members ( self-selection bias), 
4) by erroneous measurements,  
5) by an imperfect randomizing process,   
6) by the investigation or measurement methodology employed, and 
7) by using indirect measurement or the use of proxies or markers.  

There is considerable speculation that true random selection of sample members is impossible in 
real systems, and some investigator, process and/or self-selection bias always exists.  It is therefore 
incumbent on the researcher to adopt procedures which minimize sample bias, and to be aware that 
the sample estimators are never certain.  Despite the difficulty to obtain completely random 
sampling, the investigator should strive to the maximum degree possible to minimize the degree of 
bias in the sample estimators.   

SIGNIFICANCE 

Another important adjunct to randomness is the concept of significance.  Significance is a measure 
of the probability that an event is caused by random chance, and not by some ordered system.  
For example, if human adult weight or height is separated into males and females of a particular race 
or ethnic group, then gender difference will be obvious – human adult males, as a group, are heavier 
and taller than human adult females as a group.  This group characteristic difference, however must 
be evaluated as to whether there is a systematic (i.e., ordered) cause, or whether the difference is due 
to random chance.  If we estimate the difference to be caused by random chance, then we would 
conclude that there is no significant difference.  However if we estimate that the difference is due to a 
systematic or ordered cause, then we conclude that the differences are significant.  Significance will 
always remain a fuzzy concept, however, because in real systems we are never completely certain 
of our estimate or decision, and generally always assign a probability or confidence level to our 
decision.  A general rule of thumb is to estimate significance to a 95% confidence level or higher.  
That means that there would remain a 5% chance or probability that the differences are not 
significant.  It would be quite erroneous to assume the 5% probability of error will never happen.  In 
fact, it might happen to you on the very first trial.  That is why repeated trials are required to 
assure ourselves that we have indeed differentiated between systemic or random factors. 

EXAMPLE 

Ideal System.  In this example we apply the actual measured parameters of the population of Great 
Britain to a normal Gaussian distribution.  The actual data may have a skewed distribution, which we 
will ignore for the moment.  In the initial survey measuring the heights of individuals, we might have 
a plot of the data that looks like that in figure 3, below.  

Note:  the frequency associated with each height depends on the included interval of each 
measurement (e.g., for the height of 5.0 feet, the interval in this example is from 4.95+ to 5.05.)  For 
very small intervals approaching zero (e.g., exactly 5.000000 feet) the frequency would approach 
zero, as very few adults would measure exactly that height. 
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Population distribution - all adults

0%

2%

4%

6%

8%

10%

12%

14%

4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5
Height, ft

Fr
eq

ue
nc

y 
(%

)

 
Figure 3.  Distribution of height in a homogeneous adult British population 

From Figure 3 we can view the mean (average) height as 5’-6” (5.5 ft), with a standard deviation of 
5”.  However, the existence of two peaks in the distribution of adult heights in the above plot should 
cause us to doubt that our population above is randomly distributed, and wonder if perhaps there is a 
systemic cause for the two peaks.  On a hunch, we segregate our data into males and females, and re-
plot the distributions, depicted in Figure 4  
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Figure 4.  Distribution of height by gender in a homogeneous adult British population 
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The two separate bell-shaped random distribution curves in Figure 4 overlap each other.  The pink 
curve for adult females has a mean (average) height of 5’-3” (5.25 ft), while the blue curve for adult 
males has a mean (average) height of 5’-9” (5.75 ft).  The standard deviation for either gender is 2” 
(0.167 ft).  There is a 6” (0.5 ft) difference between the average heights of males and females.  The 
separation of the measurement data into males (blue-colored curve) and females (pink-colored curve) 
explains the two peaks.  For this specific example the explanation is complete because our ideal 
assumptions allowed no other possibility.  Such explanation is a systemic cause, and not a random 
factor, and we were able to separate the systemic cause from randomness because of the perfect 
distribution of randomness in our ideal example.   

Also note that the mean (average) height 5’-6” and standard deviation of about 5” in the composite 
distribution of all adults in Figure 3 is largely meaningless.  We can rightly conclude that before we 
can meaningfully establish population descriptors, we should account for significant systemic 
explanations first.  

Real system.  In the real world we would not obtain the perfect distribution depicted in figures 3, 4, 
and 5, above, which, to the extent that they are perfect, are contrived (we contrived them so as to 
better illustrate the difference between randomness and systemic cause.)  Instead, we would find that 
the measure of randomness in any actual finite population would deviate from perfect randomness by 
a considerable margin.  That is the real nature of randomness – occurrences are quite irregular – and 
there is no guaranty that greater probabilities will occur before lesser probabilities, or be fairly 
distributed.  The question we would have to ask ourselves about our finite measurements would be 
how distorted can the results be and still be considered random?  Consider the two random samples 
below, in Figures 5 and 6. 

Population distribution - all adults

0%

2%

4%

6%

8%

10%

12%

14%

4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0
Height, ft

Fr
eq

ue
nc

y 
(%

)

 
Figure 5.  Sample 1, British Population Distribution in a Random Sample of N=1,000 

Figure 5, above, is a random sample of 1000 persons (both sexes).  This is typical of a fairly 
representative distribution, and the two modes appear relatively well defined.  However, consider the 
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distribution in Figure 6, below, which is another random sample of 1,000 person (both sexes).  This 
time, in Figure 6, one might be hard pressed to recognize the existence of two modes.  (However, a 
good statistician would investigate gender dimorphism automatically, even if the initial data did not 
indicate any differences.) 
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Figure 6.  Sample 2, British Population Distribution in a Random Sample of N=1,000 

With these real-world examples, we can now consider a few important pointers to note about actual 
population sampling.   

1. Real populations are generally not homogeneous, which adds to the uncertainty of the calculated 
sample population estimators; 

2. Repeated random samples (as in Figures 5 and 6) may vary considerably from each other, adding 
more uncertainty to the accuracy of the sample population estimators.  (However, we may be able 
to decrease the uncertainty by combing separate random samples into a single larger sample 
group.) 

Note:  The population of Great Britain is about 60 million persons.  A random sample of 1,000 
persons would theoretically be expected to yield fairly representative population estimators.  The 
only way to establish this, however, is to repeatedly sample the population, and measure the 
distortions from sample to sample. 

So the answer to our question about how much distortion can appear in a random sample is that the 
distortion can be considerable, which greatly complicates our investigation into systemic cause.  The 
irregular variation due to randomness can easily mask systemic, non-random factors, especially 
irregular systemic ones such as chaos.  Further complicating the situation, regular-appearing data can 
exist as a subset of randomness, which can mislead us into seeing a systemic cause where there is 
none.  
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Thus it is that we make a great unsubstantiated leap of faith when we measure a real population or a 
sample, and assign all irregularity to randomness, and all regularity to systemic cause.  Part of the 
error is caused by having finite, non-homogeneous populations, but more often it is due to the 
unpredictable nature of randomness.  This is but one of many reasons why conclusions reached 
statistically can never be absolutely certain. 

Note:  Theoretically, a random distribution should become smoother and more symmetric as the 
number of members in the set become larger, approaching perfection as N approach infinity.  
Practically, however, even in populations numbering in the tens of millions, considerable deviation 
from smoothness and perfection occurs, and should be expected.   

MODES AND DIMORPHISM 

Dimorphism.  The bi-modal shape displayed in Figure 3, above, for our ideal distribution is also 
known as dimorphism (‘di’ – meaning ‘two,’ and ‘morph’ – meaning ‘shape’.)  Gender dimorphism, 
also called sexual dimorphism, is a hot and often controversial topic in sociological circles and 
among radical feminists groups who rally to obliterate any suggestion that gender inherently indicates 
any performance advantage for men.  Of course, much of the radical feminist ranting is nonsense – as 
a cursory review of almost every human physical characteristic indicate a significant performance 
difference between gender.  Males are as a group taller, heavier, stronger, faster, more aggressive, 
and suffer less injuries in similar sports activities than do females as a group.   

Before any male crows too loud about his being physically superior as an individual, he might consider two things: 

1) There is a high probability that some females will exist who can best him, and  

2) The majority of men devote all their physical advantage just to provide sustenance, shelter and service to their female 
mate and offspring.   

(Note:  There is some suspicion among males that females possess a power and process not easily recognized by males or 
measured by sociologist to subjugate a male without his realizing it so that all his efforts are for her benefit.  Naturally, 
the females aren’t talking.  We will talk more this and about other nuances causing difficulty in measuring the less-
obvious human traits.) 

But, not every human endeavor requires extreme physical exertion.  Socialization, communication, 
and domestication skills are also necessary for a functional society.  Many of these non-physical 
skills are difficult to define and measure, or have yet to be measured, although some studies indicate 
women are clearly superior in many such areas.  So not every human attribute is slanted in favor of 
males, and many may have no gender-influenced performance bias.   

The overview of the gender performance dimorphism issue is that overall, the total score for men and 
women are probably quite even, but on specific attributes, gender is a systemic factor.  The difficulty 
facing the sociologist, educational psychologists, and other gender-related research is that the easy to 
measure attributes, (primarily the physical ones) generally favor males, while the attributes that 
would probably favor females are difficult ones to identify and measure, being largely invisible to 
male investigators, and, strangely enough, many so-called “liberated women” apparently fail to 
distinguish their natural advantages. 

Modes.  Modal issues may also be present in engineering studies, such as traffic counts.  Daily traffic 
flow might be expected to peak in the early morning from the working population trudging (or 
driving) off to work, and then peaking again at the end of the day as the workers drive home.  More 
than two modes may be present in any distribution.  It is important to recognize that such modes are 



 18 

a strong indicator of a systemic cause, and should be investigated.  In the gender example on 
height, the two modes were obvious; however, the presence of modes is not always so obvious.  Any 
time the distribution curve deviates significantly from a Gaussian or probability distribution, systemic 
cause should be evaluated.  This is so because, the Gaussian distribution itself is the definition of 
randomness (and as we demonstrated in an ideal system it will be perfectly random.) 
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Figure 7.  Distribution of Height by Gender – cumulative population distribution 

Deriving information from the cumulative population distribution graph.  In the graph depicted 
in Figure 7, above, of cumulative population distribution, which is a summation of the population 
distribution curves shown earlier in Figures 3 and 4, we can visually observe and determine the 
percentage of males or females of a given height.  The mean of the population of each curve lies 
directly under the intersection of each curve with the 50% frequency line.  Thus we can visually 
determine that males as a group are on the average six inches taller than females (for the British 
population).  The mean height shown for males is 5.75 feet (5’-9”), while the mean height for females 
is 5.25 feet (5’-3”).  The difference between those two means is 0.5 feet (6”).   

We can also determine the mean heights in the population distribution graph (Figure 4) by observing 
the height corresponding to the two peaks of the graph for men and women separately (the pink line 
and the blue line) because each distribution curve is symmetrical in our ideal system.  However, if the 
distribution was not symmetrical, the population distribution could not be used.  The cumulative 
distribution graph can always be used to find the mean.   

Also, knowing that one standard deviation, σσσσ, always occurs between 31.73% and 68.27%  
cumulative frequencies, we can determine standard deviation for each curve  graphically, as it is the 
differences of the heights under the intersections of the curves at those frequencies (the yellow lines 
in Figure 7).  Finally, the frequency values expressed as a percentage is equal to the probability of 
occurrence. 
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Other systemic factors.  In our example of human adult height, actual statistical evaluations have 
determined the height differences of male and female populations to be significant, i.e., due to a 
systematic cause, and not due to random chance.  The systematic cause would be gender, and 
whatever causal system determines gender in humans.  Such a finding for humans appears to be true 
for all human races and ethnic groups.  In our ideal British example, we have provided no other 
perturbations to disturb the randomness of the distribution curve.  In the real world, however, the 
females of some ethnic groups are taller on the average than the males of other ethnic groups.  For 
example, both males and females of the Watutsi tribe of Africa are significantly taller on the average 
than Caucasian or Asian males.  In contrast, African pygmy males and female are significantly 
shorter on the average than Caucasian or Asian males.  Thus we would be aware that gender may not 
the only systematic cause of height and weight differences in humans, but that ethnicity or race could 
also be a factor. 

Individual versus group characterization.  It is important to note again that issues of classification, 
such as human adult height and weight by gender, are group characterizations, and not necessarily 
individual characterizations.  In Figure 7, we can determine the relative frequency of males and 
females for any given height.  For any particular height, say 6’-0”, we observe that less than 
0.00034% of the females reach or exceed this height (we can’t actually read that fine on the graph 
displayed, because the graph is plotted to coarsely, but the tabulation in Appendix A yields that 
figure), while about 6.68% of the males reach or exceed 6’-0”.  The ratio of 6’ males to 6’ females is 
then about 19,645 to 1 for this particular example.  From this not-so-far-fetched example, we can 
derive a few valuable insights: 

1) Even at 6’there are still some women who are taller than a vast majority of men; and  

2) In competition where tallness is a legitimate competitive advantage (e.g., basketball), the ratio 
of successful women competitors to successful men competitors in mixed-gender activities 
will be small, at the same ratio (almost 20,000 to 1 in our example), all other factors held 
constant.  

The first insight should provide female aspirants with the knowledge that the a few individual women 
equaling or exceeding the selection criteria (>6’-0” in our example) may be able to compete with men 
successfully in those areas where their personal attributes equal or exceed the selection criteria. 

The second insight should provide women with the knowledge that mixed gender competition 
dependent only on a tallness advantage (e.g., basketball) will of natural course tend be dominated by 
men, competition will be very stiff, and only a very few women will have a realistic chance to make 
the grade (for the basketball example of 6’, only 1 out of 20,000).  

The third insight is that where teams are selected independently, such as franchise with the five 
primary players, and perhaps ten backup players, no women would b likely to be selected, as the 15 
tallest candidates are likely to all be men.  A 6’ female from this example population desiring to 
compete for a position would theoretically be faced with almost 20,000 taller males as competition 
for the position, and thus highly unlikely to be selected to a 15-man franchise.   

Note:  This basketball example is somewhat contrived, because tallness would not be the only 
selection criteria for basketball, but also spatial orientation (shooting baskets in 3-dimensional 
space) and aggressiveness.  All these traits are male-dominated, and thus the odds of a female 
selection based only on these traits (i.e., no gender-equality laws altering the selection process) will 
be trebly magnified.  That is, instead of nearly a 20,000 to 1 odds against a female selection, the odds 
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would be more likely 1000,000,000,000 to 1, or approximately never.  This in fact is what happens 
(or, more correctly, doesn’t happen) in professional sports.  There is no male-female competition in 
any professional competition, and none in the nominally amateur competition of the Olympics, except 
for mandated mixed-double teams in tennis.  

OCCURRENCE.  The very smooth-appearing Gaussian distribution of random variance depicted in 
Figures 3 and 4 in the example of height distribution in adult British males or females should not be 
taken to imply that random events occur in any regular pattern in time.  For example, rainfall 
intensity patterns appear to be random (more likely they are chaotic), but in the prediction of the 
probability of occurrence, say of a 20-year storm, we cannot imply that such a storm will occur once 
every twenty years or so.  In fact such occurrence would not be random but systematic.  Rather, we 
imply that over a rather long period, say 100 years, the 20-year storm will occur 5 times.  Now, those 
five times may be sometimes back to back storms, may occur in separate years, or may all occur in 
the same year.  In any case, if the events are truly random, we will not be able to predict when 
they will occur.  Indeed, if we had a thousand year period of data to study, we might find some 100-
year sub-periods where no 20-year storms occurred, and other 100-year sub-periods where more than 
five 20-year storms occurred.  But in the thousand-year period, the 20 year storm would be defined 
by that storm intensity that occurred 50 time (1000 ÷ 20 = 50). 
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SPURIOUSNESS 

Spurious events, also called confounding factors, are those that occur coincidentally in our 
observations and measurements, but in fact are unrelated to the system being observed or measured.  

 Spuriousness can arise from several sources.  In the Introduction we alluded to the possibility that 
order may haphazardly appear as a subset of disorder.  An example would be the appearance of an 
apparently systemic factor in a set of events.  If in fact the factor appeared repeatedly in several trials, 
then the factor may indeed to systemic.  However, if the factor never appears again, then we may 
conclude it was spurious, perhaps arising as a randomly occurring temporarily ordered-looking 
subset.   

Spuriousness also occurs in studies in which unrelated variables are included for measurement.  In 
true scientific experiments, where variables are manipulated, spurious variables can be identified and 
removed, because manipulating them will not cause a change in outcome or a change in other 
variables.  But in quasi-experimental investigations, where variables are not manipulated, spurious 
variables can not be easily identified.  Thus, for quasi-experimental designs, it is not a good practice 
to “measure everything” and let the statistical process “sort it out,” because mathematically the 
statistical process cannot differentiate between a spurious event and a related event- and will not be 
able to “sort it out” correctly.   

Spurious variables are a very serious factor in invalidating studies.  It is important for the researcher 
to address spuriousness and how it is controlled.  The existence of spurious variables can give rise 
to alternate explanations to hypothesis, and thus invalidate any conclusions.   

EXPERIMENTAL DESIGN 

In a true experimental scientific exploration or study, the variables are manipulated.  Such 
manipulation is the best way to eliminate spurious variables, and to observe causal relations.  In the 
best of worlds, the actual causal variables are directly manipulated and the results directly observed 
while all other factors are held constant.  Repeating such an experiment several times allows spurious 
occurrences and spurious variables to be identified and removed from the results.  Spurious 
occurrences will not be repeated in subsequent trials, and spurious variables, when manipulated, will 
not cause systemic variation in the dependent variable.  In this ‘best-scenario’ case, the contributing 
variables are independent, meaning that they can be held constant (i.e., unchanging) while each one 
of the variables is manipulated separately, thus facilitating the measurement of the manipulated 
variable and the measurement of the effect on the dependent variable, and establishing the magnitude, 
direction, and type of relationship of each variable.  While some uncertainty may still exist, even in 
very carefully controlled experiments, the level of uncertainty is very small, and for all practical 
purposes, nonexistent.   

More often than not one or more of the following conditions persist in an experiment:  

1) the variables available to be measured are not independent,  
2) significant and important causal variables are omitted,  
3) the variables available to be measured are proxies or markers, and/or  
4) the observations are indirect.   

Independence.  Independent variables are desirable to effectively establish relationships in 
experimental trials.  Employing variables that co-vary in a model introduces confusion in the 
interpretation of results, and to a certain degree is tantamount to measuring the same thing twice.  For 
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example, if human height is measured for a standing person from the barefoot to the top of the head, 
and we again measure the length of the person laying down from the sole of the barefoot to the crown 
of the skull, we may get a different measure, but it will be very close to the standing measure, and the 
length so measured can be expected to strongly co-vary with the height.  One is not a cause of the 
other, but one is the other, in a different light.  Employing both measures in a model would serve 
little purpose.  Rather the researcher should choose one and forgo the other as redundant.   

Of course, nothing is absolute.  One could conceive of an experiment as to the compressibility of the 
human spine and joints under the influence of gravity or acceleration, in which case the standing and 
prone measurements would be relevant (actually, the difference between them.) 

Omission.  Often it is difficult or unwieldy to include all independent variables in the final model 
intended for application, as many variables may have only a small or even negligible contribution in 
practical applications.  However, the researcher needs to establish that such is in fact the case, and not 
depend solely on logic or his model to exclude variables.  Despite the investigator’s best attempt, 
important variables often go missing because the phenomenon under investigation is poorly 
understood.  In such cases, the study should be labeled as “exploratory.” 

Indirect.  Often direct measurement in an investigation is not possible, and indirect measurements 
are necessary.  Indirect measurement includes the use of proxies and markers as substitutes for actual 
variables.  In such cases it is more difficult to be certain that the indirect measurement is meaningful.  
And, in such case, spurious events may be harder to detect  

Proxies and markers.  Many phenomena do not readily reveal their causal factors to the human 
investigator.  Out of necessity, and sometimes for convenience, a proxy variable is measured which is 
thought (or hoped) to fairly represent the actual causal variable.  A marker is a variable that is 
measured because it is thought to be strongly associated with a causal variable.  In many cases we 
will not know for certain whether a variable measured is a direct causal factor or a proxy or a marker.  
In those cases, where prediction only is desired, such proxies and markers may be sufficient.  But in 
those cases where change is desired, the deliberate or inadvertent employment of proxies and markers 
may yield disappointing and contrary results.  

Control groups.  A control group is one that is not manipulated, and serves as a base to compare 
against a manipulated group.  Control groups greatly enhance the credibility and certainty of a study.  
When control groups are comprised of humans, measurement error can be exacerbated if the subjects 
know they are in the control group, and may report anomalous and misleading results, either 
consciously or subconsciously.   

Blind and double-blind studies.  To eliminate the possibility of erroneous subject feedback, the 
blind study does not allow the participants to know whether they are in the control group or in the 
manipulated group.  A common example of a blind study is the study of the efficacy of a medicine 
for an illness, or for side effects, where some of the participants are given the medicine, and others 
are given a placebo, but neither can tell which is which.  In a double blind study, the administers of 
the test also do not know who is getting what, and thus cannot inadvertently clue the participant.   

QUASI-EXPERIMENTAL STUDIES 

In quasi-experimental studies, the variables are not manipulated.  An investigator may not be able to 
manipulate variables for several reasons: it may be impossible, difficult, illegal, unethical, immoral, 
or perhaps the relational variables have not been identified sufficiently to even know what to 
measure.  Most sociological and psychological studies involving human input or outcome fall into 
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this category, and the method is sometimes used when more experimental methods could be 
employed were it not for legal, ethical or moral considerations.   

There is some feeling that quasi-experimental designs are not truly scientific.  Indeed, there is too 
often an over-reliance on statistical processing, particularly the use of the mathematical processing of 
partial correlation coefficients, to arrive at questionably “independent” correlation coefficients.  
Despite these shortcomings, however, in many cases, there are no other acceptable alternatives to 
assess the nature of the relationships that may exist.  So a quasi-experimental design is employed out 
of necessity.  Quasi-experimental designs suffer all the vagaries of experimental designs, plus 
additional vagaries peculiar to quasi-experimental approach.  

The investigator employing quasi-experimental methodology should be fully cognizant that the 
certainty of the study results is adversely affected thereby.  Whenever possible, the study design 
should employ techniques to reduce the inherent uncertainty of the quasi-experimental approach.  
The following techniques should be incorporated as much as possible. 

1) Develop a keen familiarity and insight of the phenomenon to be investigated.  Consult many 
specialists to get their insight on agreement and on controversies in that area.  

2) Develop a well-defined model that includes all significant variables and allows direct 
identification of spurious variables whenever possible. 

3) Directly eliminate spurious variables and their measurements as input whenever possible.  
The elimination of spuriousness from a statistical study is one of the requisites for inferring 
causality. 

4) Conduct many studies from many angles, trying to isolate individual variables to determine 
their nature and relevance.  

5) Refine the model and start over again when investigation results are inconclusive. 

Cross-sectional studies.  Cross-sectional studies are those that gather data at one point in time.  Most 
quasi-experimental studies fall into this category.  As such, there is no way for the investigator of 
quasi-experimental study to determine whether the thing measured is constant or varies with respect 
to time.   

Repeated cross-sectional studies.  One method to try to gain appreciation of a variable over time is 
to make repeated cross-sectional studies at subsequent time intervals.  Such studies, however, have 
the inherent flaw that the subjects, or members of the study set, are different for each new cross-
section.  This discontinuity in set membership introduces the possible alternative explanation that any 
differences might be due to the change of members, and not the change in time. 

Longitudinal studies.  To compensate for the inherent flaw in repeated cross-sectional design, the 
longitudinal study keeps the same members and measures them repeatedly at subsequent time 
intervals.  The biggest problem facing longitudinal design, especially long-term designs over a period 
of years, is that the members leave the study, become unavailable, die, or otherwise do not participate 
in all the measurements.  An additional problem with this design is that it is usually very expensive, 
and the number of participating individuals small in number.  Even for the few well-funded studies 
with a large number of participants, the issues of spuriousness and/or omission of significant 
variables are not addressed by the longitudinal design alone.  

Partial coefficients.  In statistical analysis, most obvious in regression analysis, a common problem 
is that the variables measured are not truly independent, and too often the supposedly independent 
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variables co-vary with one another.  This happens most often because a model of the system is poorly 
defined, and/or the truly independent variables are not easy to define and/or difficult to measure, so 
the available or easy-to-measure variables (which may not be independent, and may even be 
spurious) are measured.  Such covariance distorts the true description of the system, and a means to 
remove the covariance is desirable.  The best method to remove co-variance between “independent” 
variables is to develop or refine the model so that only truly independent variables are measured.  
However, this is not always possible, especially in sociological models.   

In a true and properly controlled experiment, each variable would be manipulated separately with all 
other variables held constant.  This process would be repeated for each variable.  The result is of such 
a controlled experiment is a set of partial descriptors, wherein partial takes on a mathematical 
definition – meaning that it is the descriptor relating the independent and dependent variable with all 
other variables held constant.  If in fact none of the other alleged ‘independent’ variables co-vary 
during the manipulation of the target variable, then the variables are truly independent, and the model 
is well specified, at least as in regard to the included variables.   

In studies of relationships between physical inanimate objects and systems, such as in the “hard” 
sciences and engineering, it is in most cases actually possible to hold conditions fairly constant and 
manipulate one variable at a time, and see what changes occur in the system due to such 
manipulation.  If in such experiment the variation between repeated trials is very small, and the 
strength of the relation near unity, then a causal relationship can be strongly inferred between system 
variables.  In many such relations, the designation of which variable is dependent is immaterial and 
interchangeable.   

There are some important considerations for variables in experiments seeking to establish causal 
relationships between variables: 

1) the model of the system should employ truly independent variables,  

2) all important independent variables should be accounted for, and  

3) all spurious variables must be eliminated.  

Spurious variables are also called confounding factors for good reason.  Their presence can 
completely invalidate any experiment or quasi-experiment if their effects are not identified and 
removed from consideration.  A researcher may not know initially if a variable is spurious or not in a 
single experiment, but repeated experiments should show the variable to be erratic, indicating 
spuriousness.  Spuriousness is particularly hard to identify in quasi-experimental designs common in 
sociological and psychological investigations.  The best defense against spuriousness is a well-
defined model and well specified experiment. 

In many statistical studies, particularly sociological, manipulation of variables is difficult, impossible, 
illegal or unethical.  Such investigations are called quasi-experimental because variables are not 
manipulated, and spuriousness is too often not directly controlled.  Instead the unaware researcher 
goes about measuring all that can be measured, whether related or not, and attempts to filter out the 
relevant from the irrelevant by a process of calculating  partial coefficients, purporting to remove the 
effect of the covariance between not-so-independent variables.  This process has been resoundingly 
criticized as just as apt to introduce additional distortion as to remove it.  Nevertheless, it remains 
widely practiced, and for no other reason alone, such studies should be viewed with more than the 
usual grain of salt.  If spurious variable are present, the effect on partial coefficients may be great 
enough to severely distort and misrepresent the true influence. 
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BIAS 

Bias is usually a systemic actor on otherwise random events.  A classic example is a loaded dice, 
wherein a weight is placed in the dice so as to cause one face to be favored to show when the dice is 
rolled.  In some loaded dice, the weight is movable, so that by tapping the dice in the right way, the 
weight will slide to the opposite side, or be neutral.  Even with a fair, unbiased dice, some individuals 
are sufficiently adept at rolling the dice to control to some measure the surfacing face.  Such control 
is particularly evident in flipping a coin.  Most individuals, with some practice, can learn to flip a 
coin so that one side habitually lands face up.   

Bias may also be a natural subset of randomness.  In the totality of possibilities, the ordered subset 
and the biased subset exist.  The probability may be low, but the occurrence sooner or later is a 
certainty.  Such occurrences might be termed a ‘phantom’ actor.  In an experimental design, with 
repeated manipulations, we will be able to identify the phantom actor and eliminate it, as it is unlikely 
to be repeated.  But in quasi-experimental designs, such phantom actors cannot be identified with any 
certainty, if at all, and remain a source of spuriousness.   

Humans that we are - who employ statistical methodology, our own perverse nature can induce a bias 
in the investigation.  Humans are subject to justifying presupposed outcomes, having hidden agendas, 
ignoring the facts before us, deleting measurements that don’t support our preconceived answers, and 
suppressing findings contrary to our economic interests.  Even reputable scientists are occasionally 
unmasked as having compromised the purity of an investigation, and become tainted by revelation of 
a vested interest in a particular outcome.   

We should look with a natural suspicion on outcomes of investigation made by, or funded by, those 
entities with a vested interest in the outcome.  A classic example is cigarette company researches into 
the dangers of smoking.  New court trials and expert witnesses reveal that adversarial findings were 
systematically suppressed by the cigarette companies by non-disclosure clauses in the contracts for 
research.  But cigarette companies are not the only entities with vested interests.  So do politicians, 
and advocacy groups.  Not a few such groups engage in fabricated studies and deliberately skewed 
results to support their cause. 
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REPRESENTATION, APPROXIMATION AND PRECISION 

 
In the ideal world, everything is certain and defined precisely, and all measurements are exact.  Not 
so in the real world.  Every ideal representation is an approximation of the real world.  Every 
ideal or empirical formula and equation is only an approximate representation of the real-world 
system or phenomenon described.  Every measurement we make in the real world is imprecise.  
Every observation is incomplete and to some extent distorted.   

Despite this rather negative revelation, we humans go about making our approximate models, and 
simplifying assumptions without much concern for imperfection.  And in the great majority of cases, 
we can predict well enough to be useful.  And if our processes become too inaccurate, why, we’ll just 
refine them enough to be useful again.  In fact, this process of progressive refinement is probably our 
only avenue to keep the gap between our ideal representations and the real world to a manageable 
level. 

But let not the investigator be blasé about it.  There are today groups of humans who live and 
function much as their ancestors did thousands of years ago, even prehistoric.  And they may 
continue to do so.  They are not in charge of their destinies, and make no contribution to progress.  
Indeed, it is believed by some that only a small percentage of humans in any generation actually 
contribute to learning and progress in knowledge, application, or organization, and the rest are simply 
beneficiaries (or victims) of an evolutionary process they had little cognizance of.  Those of us on the 
frontiers of refining, expanding and disseminating human knowledge have an opportunity as well as 
an obligation to understand the processes by which we progress or perish.  We, who desire to 
maximize our control of our own destinies and that of our progeny, must be very cognizant of the 
need to ever sharpen our idealistic tools and processes so that our understanding and manipulations of 
the real world bring us benefit, and not harm. 

REPRESENTATION 

Representation pertains to the ideal model, and how well it mimics the real system we seek to 
represent.  Representation can also pertain to the sample that we extracted from the population – how 
well do the sample predictors represent the population parameters 

In the case of the ideal model, it is usually adequate to include only a few of the most important 
factors, and omit the less important ones.  So inherently the model is approximate.  Also, in many 
cases, especially quasi-experimental models, it is usually not known which factors are important, 
which are not, and which are spurious – so the model representation is even more ambiguous.   

APPROXIMATION 

Approximation is commonly used loosely to be interchangeable with representation and precision.  
But in this discussion, approximation refers to the ideal formulas and equations used to describe the 
relations of variables in real systems.  While undergraduate students in the sciences and in 
engineering occasionally receive glimpses of the approximations and simplifications made in the 
derivation of formulas and equations, many never realize that every such formula and equation is an 
approximation to the real phenomena described. 
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PRECISION 

Precision is a definition of measurement and manufacturing.  In the real world, precision of 
measurement is a matter of degree that can always be improved.  Often our measuring instruments 
are intrusive and disturb the thing being measured so that inaccuracy is inherent.   

Inanimate objects.  In the ideal world, we can measure exactly, but in the real world, all of our 
instrumentation is imprecise to some degree.  For example, a surveyor’s 100-foot chain shrinks and 
elongates according to the temperature, requiring a temperature correction.  That same chain sags 
when stretched out for measurement, and requires a spring-loaded tension at specific force to 
compensate for the sag.  The chainman’s hand trembles a bit has he struggles to hold the end of the 
chain precisely over the pin on the ground as he holds a plumb-bob in one hand and the chain end in 
the other.  The crewman reading the measure from the chain must interpolate a reading as the marker 
on the chain undulates a fraction here or there.  When it all done, there is a small error, hopefully 
negligible.  But as the survey crew traverses the outline of a property, or extends the geodetic 
position, such error accumulates, and must be arbitrarily distributed.  In the end, if the accumulated 
errors exceed the contracted precision, it must be done again.   

Advances in measurement accuracy more or less keep pace with the need for more accuracy.  
However, as longer distances are projected, such as in predicting orbits for satellite placement, 
sufficient accuracy in initial measurements are impossible (remember chaos?) and self-adjusting 
mechanisms are employed to make necessary corrections in the initial trajectory and final orbit. 

Animate objects.  The above illustrates problems in precision in measuring inanimate objects.  When 
living organisms are being measured, especially when human observation is employed, which is 
almost always, many other factors begin interplay with severe effect on the precision of the 
measurement.   

Deceit and camouflage are a necessary and essential part of living organisms.  They are part of the 
survival mechanisms each life form employs to ensure survival and replication.  The methods 
employed range from faking aggression to faking death.  And if that were not enough, many life 
forms are aggressive, with sharp fangs and/ or claws, as well as poisonous stingers.  The point is that 
the investigator must be aware of this normal deceit and camouflage, and be able to look beyond it. 

In the case of humans, elaborate social rituals and actions have evolved to mask our true intents and 
feelings from prying, spying eyes and ears.  We may not answer truthfully or at all if the question 
threatens our well-being, or puts us at risk of harm or exposing our secrets.  In addition, we may have 
pre-conceived notions of the outcome, and the research is nothing more than a ritual to formalize our 
position – whether or not it is the truth.  
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PREDICTION 

 
Prediction seems to be a basic biological need.  All life forms appear to need a prediction mechanism 
to answer the questions of where the sustenance is, how to get to it, how to capture it, how to avoid 
being eaten by another organism, when to replicate, what is dangerous, what is symbiotic, etc.  We 
study order and disorder, and their offspring chaos and randomness, precisely because their 
occurrences in real systems appear to thwart our ability to predict events accurately or at all by our 
ideal systems. 

There are two types of prediction that interest us – the first to predict outcome, and the second to 
cause a change.  In predicting outcome, especially of natural events, the use of proxies and markers 
may be quite adequate.  However, when predicting change, causal factors must be used if any 
semblance of precision is desired.  And causation is a very difficult thing to establish using statistical 
processes.  In true experiments, of course, causal relations can be established with great certainty for 
carefully designed, executed and repeated experiments.  But in quasi-experimental designs, causation 
is much more difficult, if it is possible at all.  Social designers, generally with no other choice but the 
quasi-experimental design, are more often than not disappointed in the perverse outcomes of their 
attempts to cause social change.  In many cases there never existed any study to verify the social 
model, and where there was, causal factors were not established, and/or spurious factors were not 
eliminated.  

Within ideal systems time may be reversible or irrelevant, but within real systems, time is irreversible 
and usually always relevant.  Many observational problems plague our ability to detect, discern, or 
measure real systemic mechanisms.  The relative timing of events is often difficult to establish 
because our observations are indirect and/or imprecise.  
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CLOSING 

The student of statistical methodology is taught, and too often routinely employs, mathematical 
analogies and processes that give the appearance of determinacy and accuracy to the formulaic 
output.  What this paper has tried to present is a feel for the error and indeterminacy inherent in the 
statistical process, and especially the quasi-experimental design.   

Forearmed with the knowledge that statistical answers are only indicative, however weakly or 
strongly, and not certain, it is hoped that the statistical investigator will more cautiously state their 
conclusions.   

It is also hoped that this paper is simple enough to help the general public understand the inherent 
limitations of statistical studies.  Sufficiently forearmed, the ordinary layperson is better able to 
discount the many questionable findings so frequently (mis)reported in popular magazines, 
newspapers, and periodicals.   
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APPENDIX A 

δx 0.05 δx 0.05 δx 0.05
σ 0.166667 σ 0.166667 σ
µ 5.25 µ 5.75 µ

height cdf pdf height cdf pdf height cdf pdf
4.00 0.000000 0.000000 4.00 0.000000 0.000000 4.00 0.000000 0.000000
4.05 0.000000 0.000000 4.05 0.000000 0.000000 4.05 0.000000 0.000000
4.10 0.000000 0.000000 4.10 0.000000 0.000000 4.10 0.000000 0.000000
4.15 0.000000 0.000000 4.15 0.000000 0.000000 4.15 0.000000 0.000000
4.20 0.000000 0.000000 4.20 0.000000 0.000000 4.20 0.000000 0.000000
4.25 0.000000 0.000000 4.25 0.000000 0.000000 4.25 0.000000 0.000000
4.30 0.000000 0.000000 4.30 0.000000 0.000000 4.30 0.000000 0.000000
4.35 0.000000 0.000000 4.35 0.000000 0.000000 4.35 0.000000 0.000000
4.40 0.000000 0.000000 4.40 0.000000 0.000000 4.40 0.000000 0.000000
4.45 0.000001 0.000001 4.45 0.000000 0.000000 4.45 0.000000 0.000001
4.50 0.000003 0.000005 4.50 0.000000 0.000000 4.50 0.000002 0.000005
4.55 0.000013 0.000019 4.55 0.000000 0.000000 4.55 0.000007 0.000019
4.60 0.000048 0.000063 4.60 0.000000 0.000000 4.60 0.000024 0.000063
4.65 0.000159 0.000192 4.65 0.000000 0.000000 4.65 0.000080 0.000192
4.70 0.000483 0.000536 4.70 0.000000 0.000000 4.70 0.000242 0.000536
4.75 0.001350 0.001370 4.75 0.000000 0.000000 4.75 0.000675 0.001370
4.80 0.003467 0.003200 4.80 0.000000 0.000000 4.80 0.001734 0.003200
4.85 0.008198 0.006838 4.85 0.000000 0.000000 4.85 0.004099 0.006838
4.90 0.017864 0.013364 4.90 0.000000 0.000000 4.90 0.008932 0.013364
4.95 0.035930 0.023883 4.95 0.000001 0.000001 4.95 0.017966 0.023885
5.00 0.066807 0.039037 5.00 0.000003 0.000005 5.00 0.033405 0.039042
5.05 0.115070 0.058351 5.05 0.000013 0.000019 5.05 0.057542 0.058370
5.10 0.184060 0.079768 5.10 0.000048 0.000063 5.10 0.092054 0.079831
5.15 0.274253 0.099728 5.15 0.000159 0.000192 5.15 0.137206 0.099920
5.20 0.382089 0.114027 5.20 0.000483 0.000536 5.20 0.191286 0.114563

5'-3" 5.25 0.500000 0.119235 5.25 0.001350 0.001370 5.25 0.250675 0.120605
5.30 0.617911 0.114027 5.30 0.003467 0.003200 5.30 0.310689 0.117227
5.35 0.725747 0.099728 5.35 0.008198 0.006838 5.35 0.366972 0.106566
5.40 0.815940 0.079768 5.40 0.017864 0.013364 5.40 0.416902 0.093132
5.45 0.884930 0.058351 5.45 0.035930 0.023883 5.45 0.460430 0.082234

5'-6" 5.50 0.933193 0.039037 5.50 0.066807 0.039037 5.50 0.500000 0.078073
5.55 0.964070 0.023883 5.55 0.115070 0.058351 5.55 0.539570 0.082234
5.60 0.982136 0.013364 5.60 0.184060 0.079768 5.60 0.583098 0.093132
5.65 0.991802 0.006838 5.65 0.274253 0.099728 5.65 0.633028 0.106566
5.70 0.996533 0.003200 5.70 0.382089 0.114027 5.70 0.689311 0.117227

5'-9" 5.75 0.998650 0.001370 5.75 0.500000 0.119235 5.75 0.749325 0.120605
5.80 0.999517 0.000536 5.80 0.617911 0.114027 5.80 0.808714 0.114563
5.85 0.999841 0.000192 5.85 0.725747 0.099728 5.85 0.862794 0.099920
5.90 0.999952 0.000063 5.90 0.815940 0.079768 5.90 0.907946 0.079831

6.68% 5.95 0.999987 0.000019 5.95 0.884930 0.058351 5.95 0.942458 0.058370
19645 6.00 0.999997 0.000005 6.00 0.933193 0.039037 6.00 0.966595 0.039042

0.00034% 6.05 0.999999 0.000001 6.05 0.964070 0.023883 6.05 0.982034 0.023885
6.10 1.000000 0.000000 6.10 0.982136 0.013364 6.10 0.991068 0.013364
6.15 1.000000 0.000000 6.15 0.991802 0.006838 6.15 0.995901 0.006838
6.20 1.000000 0.000000 6.20 0.996533 0.003200 6.20 0.998266 0.003200
6.25 1.000000 0.000000 6.25 0.998650 0.001370 6.25 0.999325 0.001370
6.30 1.000000 0.000000 6.30 0.999517 0.000536 6.30 0.999758 0.000536
6.35 1.000000 0.000000 6.35 0.999841 0.000192 6.35 0.999920 0.000192
6.40 1.000000 0.000000 6.40 0.999952 0.000063 6.40 0.999976 0.000063
6.45 1.000000 0.000000 6.45 0.999987 0.000019 6.45 0.999993 0.000019
6.50 1.000000 0.000000 6.50 0.999997 0.000005 6.50 0.999998 0.000005
6.55 1.000000 0.000000 6.55 0.999999 0.000001 6.55 1.000000 0.000001
6.60 1.000000 0.000000 6.60 1.000000 0.000000 6.60 1.000000 0.000000
6.65 1.000000 0.000000 6.65 1.000000 0.000000 6.65 1.000000 0.000000
6.70 1.000000 0.000000 6.70 1.000000 0.000000 6.70 1.000000 0.000000
6.75 1.000000 0.000000 6.75 1.000000 0.000000 6.75 1.000000 0.000000
6.80 1.000000 0.000000 6.80 1.000000 0.000000 6.80 1.000000 0.000000
6.85 1.000000 0.000000 6.85 1.000000 0.000000 6.85 1.000000 0.000000
6.90 1.000000 0.000000 6.90 1.000000 0.000000 6.90 1.000000 0.000000
6.95 1.000000 0.000000 6.95 1.000000 0.000000 6.95 1.000000 0.000000
7.00 1.000000 0.000000 7.00 1.000000 0.000000 7.00 1.000000 0.000000

1.000000 1.000000 2.000000

Adult Females Adult Males Composite

 


